
Analysis of Chord Functions in the Bach Chorales Using Hidden Markov
Modeling

Rupert Deese
CS 151: Artificial Intelligence

Harvey Mudd and Pomona Colleges Joint Computer Science Department

Abstract

We attempt to replicate a technique described in a forth-
coming paper that deduces musical grammar from a col-
lection of musical works by training a hidden Markov
models on them. K-means clustering is used to consol-
idate the results of many randomly initialized HMMs
into a single characteristic model. We verify that a 3-
state model gives a grammar that best fits the Bach
chorales. Due to inconsistent results from the HMM
training and decoding, the relative performance of mod-
els with more than three states is ambiguous. The chord
functions and transitions of the 3-state model reflect ba-
sic notions of musical structure, most notably the pre-
dominant, dominant, tonic cycle.

Introduction
Most music contains more than one melodic voice. Multiple
voices in harmony create a chord, one of the basic functional
units of Western music and musical analysis. Although, as
the composer Max Reger is said to have declared, ”any chord
can follow any other chord”, Western music exists in relation
to, and mostly follows, a set of harmonic rules [1].

These rules are aptly compared to those that govern natu-
ral language, and can be called a musical grammar. A musi-
cal grammar explains the structure of music by reducing the
combination of voices in a piece of music at any given mo-
ment (voices, guitar, bass, piano, etc) to a chord. The gram-
mar defines equivalence classes of chords called chord func-
tions, and rules that govern the transitions between chord
functions.

If we think of a musical grammar as a collection of states
representing a chord functions, each with high probabilities
of ’emitting’ the chords characteristic of that state, and each
with a high probability of transitioning to another state if
there is a rule allowing a transition between the correspond-
ing chord functions, we have a mild, but still reasonably ac-
curate, abstraction of a musical grammar.

This paper, seizing on the correspondence between that
abstraction and the hidden Markov model, presents an ap-
proach to characterize musical grammar by creating a hid-
den Markov model that is characteristic of a group of mu-
sical compositions. Such an approach has the potential to
verify, expand upon, or complicate existing chord function

theories, by inferring functional groupings based solely on
chord contexts.

Related Works
This paper does not present original research. It describes
an effort to replicate work done by Christopher White, and
follows his methodology as closely as possible [2, 3].

Background
It is important to qualify, with respect to the introduction as
well as all that follows, that the musical grammar and music
theory described in this paper is most pertinent to Western
classical music, and consequently also of great relavance to
Western music following the Classical period. Other musics
almost certainly have grammars of their own, but this paper
makes no claims about those grammars.

Chords are the functional units of musical grammar, anal-
ogous to words in natural language. Figure 1 shows a typical
chord function analysis of a four-voice chorale written by
J.S. Bach. The chords, on the first line, are labeled accord-
ing to the key of the chorale, which is G major (a G chord
is a I, an A minor chord is a ii, and so on). The function of
each chord is then distilled from these labels. The chorale
in Fig. 1 also shows adherence to the corresponding rules
that dictate allowed progressions between chord functions.
For example, the pre-dominant, dominant, tonic cycle, one
of the most enduring structures of Western music, appears
once in each measure. A musical grammar consists of chord

Figure 1: Measures 3 and 4 of Bach’s chorale Straf’ mich
nicht in deinem Zorn. The first line of roman numerals is a
reduction of the four voices in the chorale to chords. The line
below labels the chords according to their function.



functions and the rules that determine allowed sequences of
them.

Musical grammars first received explicit attention when
Noam Chomsky introduced formal grammars in the study of
natural language. Chomsky’s context-free grammars spec-
ify not just neighborly relations of elements in a grammar,
but overall structural requirements. Musical grammars are
likewise termed ”generative,” consisting not just of correctly
adjacent chords but of phrases, forms, and movements [4].
Context-free grammars and their relatives can be very com-
plex, but simpler grammars can still be powerfully descrip-
tive, and are easier to produce experimentally. Claude Shan-
non, for example, effectively modeled English as a Markov
process for the purposes of information theory [5].

A Markov model is a stochastic model in which the prob-
ability of the next state depends only on the current state;
each state has its own fixed probability of transitioning to
each other state. A Hidden Markov model (HMM), consists
of an underlying Markov model who’s states are hidden. In-
stead, each state has a probability of emitting each possible
piece of evidence. An HMM can be trained algorithmically
using a dataset, so that its transition and emission probabil-
ities are tailored to produce the data with high likelihood.
HMMs have been used successfully to process natural lan-
guage [6].

The dataset used in this study is the 371 chorales written
by J. S. Bach. Their Baroque style is exemplary of Western
classical musical grammar, and makes chord reduction easy.
The statistical properties of harmony in the Bach chorales
have been explored before, and grammars have been devel-
oped that produce them [7, 8].

System Description
The data analysis was done in three steps: data collection,
HMM modeling, and clustering. Data was collected us-
ing the music21 python package, which provides the Bach
chorale corpus as a sample dataset [9]. The chorales were
processed one by one into a collection of sequences for use
as input to the HMMs. Each chorale was reduced to chords
by extracting a chord from the chorale at every moment that
a voice changes in pitch. The key of each chord was deter-
mined in context using the Bellman-Budge windowing algo-
rithm, with an 8-chord window: each chord was associated
with eight key-guesses, and was accepted if all eight agreed
[9]. Any contiguous group of chords in the same major key
was transposed into C major and used as a sequence. The se-
quences were then further edited by removing the 40% least
likely chords in all sequences, and by removing chords that
were identical to, or a small subset of, one of their neigh-
bors. If a least likely chord was removed from the middle of
a sequence, the sequence was split into two at that location.

Discrete HMMs were implemented using the GHMM
python package [10]. For HMMs with 3-15 states (inclusive)
50 HMMs were tested as follows. The transition, emission,
and initial state probabilities of each HMM were randomly
initialized. The HMMs were trained on all bigram transi-
tions in the sequences using the Baum-Welch algorithm, and
then used to decode 20% of the sequences, assigning a state

to each chord, with the Viterbi algorithm. The state assign-
ments were collected in a 50-element vector for each chord.
A distance matrix of the chords was constructed, in which
the ijth entry was the square of the number of differences
between the ith and jth chords in the decoded sequences.

The k-means algorithm implemented in the scikit-learn
python package [11] was used to cluster the matrix, with k
equal to the number of states in the HMMs. The clustering
grouped chords with similar vectors, meaning they had been
assigned similarly by all 50 HMMs. Chords clustered to-
gether were considered to belong to the same state of the
characteristic k-state HMM averaging all 50 trials. Emis-
sion and transition probabilities, and the overall likelihood
of each state, were determined by analyzing the decoded se-
quences and the cluster assignment of each chord. The re-
sults of clustering were evaluated by their silhouette score,
or the average silhouette width over all vectors.

Results
The results are evaluated based on their agreement with the
results found in White’s work. Each figure references a spe-
cific figure from White, 2013 for comparison [2].

In the sequences extracted from the chorales, 209 unique
chords were found (out of

(
12
4

)
= 495 possible combinations

of the 12 semitonal pitch classes). The 84 least common of
these were removed. The most common chords were I, V,
V7, IV, vi, ii7, and ii.

Figure 1 shows representative silhouette score graphs
from two runs. A global maximum is observed for the k = 3
solution. White also finds a global maximum at k = 3,
but his silhouette scores for k > 3 are more robust over
multiple runs, while ours varied widely over different runs
of the HMMs. Our silhouette scores are significantly lower
than White’s, and we do not find a clear local maximum at
k = 13, only that silhouette score decreases as the number
of states increases.

Figure 2(a) shows the characteristic HMM for the k = 3
solution scored in Figure 1(a). Fig. 2(b) shows that the most
probable chords for each state align almost exactly with
White’s results, allowing us to label the states with White’s

Figure 2: Silhouette width as a function of k for two identical
runs of 50 models each [(a) solid line; (b) dots]. The maxima
of the graphs, indicating the best choice of k, are not the
same. Compare to Example 5 in White.
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(a) State diagram of the HMM. Edge thick-
nesses are proportional to transition prob-
abilities. Node size is proportional to the
overall probability of each state.

State Chord Emission Probability
V7 0.22

0 V 0.20
D IV 0.12

vii◦ 0.08
I 0.62

1 vi7 0.05
T iii 0.04

vi 0.03
V 0.20

2 IV 0.12
P Vsus4 0.07

ii7 0.07

(b) The four highest emission probabilities for
the states in of the HMM.

Figure 3: Characteristic HMM corresponding to the maxi-
mum silhouette width in Fig. 1a., with k = 3. Compare with
Example 6 in White.

labels of T , P , and D for tonic, pre-dominant, and domi-
nant. The transitions are also nearly identical, showing the
P → D → T cycle, a high probability of P → P , and al-
most no probability of D → P transitions, to name a few
obvious features. Interestingly, our result shows a higher
probability of T → D than P → T transitions, while
in White’s results the probabilities appear equal or perhaps
slightly skewed towards P → T .

A music theoretical comparison of our higher-scoring
state results for k > 3 to White’s k = 13 result is beyond the
scope of this paper, but cursory inspection shows that some
chord functions have been defined similarly. Figure 3 shows
the characteristic HMM for a k = 11 solution. State 10 has
emissions similar to the Pm state in White’s results, state 9
has emissions similar to the p state, and our results duplicate
the high likelihood of Pm → p and p → Pm transitions.
This and other similarities suggest that despite much lower
silhouette scores, our models with k > 3 found parts of the
same musical grammar that was elucidated in White’s work.
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Figure 4: Characteristic HMM corresponding to a local max-
imum silhouette width in Fig. 1b., with k = 11. Compare
with Example 7 in White.

Discussion

Overall, our results verify that HMMs trained on a collec-
tion of musical works produce chord functions and transi-
tion probabilities that accurately describe the musical gram-
mar. The descriptive power of this grammar is limited by the
inherent limitations of HMMs (as compared to more power-
ful generative grammars). Our low silhouette scores suggest
at least one crucial difference from White’s experiment. A
more precise detailing of White’s methods (hopefully forth-
coming) is necessary to pinpoint any differences. Given our
lack of consistent silhouette scores for models with k > 3,
the difference is likely to be in the HMM training and de-
coding step.

Despite these differences, our methods produce results for
a three-state solution that are nearly identical to White’s,
and our high-scoring models with more than three states
bear similarities to White’s 13-state model. We can verify
that a fundamental grammar of tonic, pre-dominant, domi-
nant cycles underpins Bach’s chorales. Further investigation
is needed to see if this technique produces meaningful re-
sults for other collections of music. If it does, it is a compu-
tationally cheap way to access and understand the musical
grammar of a body of work, requiring no expert knowledge.
This technique may be useful as an aide to music theorists,
or as a tool in genre classification based on shared musical
grammars.
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